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Abstract 8 

The lamprey is one of the most ancient of extant vertebrate species.  It has 9 

changed relatively little in 450 million years and is considered a prototype for all 10 

vertebrates.  Its primitive nervous system has been studied extensively, and the basic 11 

architecture of the central pattern generator (CPG) that produces its anguilliform 12 

swimming motion is well known.   13 

Here it is shown that each segmental component of the lamprey's CPG is a JK 14 

flip-flop, with additional excitatory inputs and feedback that cause all of the neurons' 15 

states to oscillate.  The JK flip-flop is the most widely used flip-flop design in 16 

electronic computational systems because of its advantageous features.  This is 17 

apparently the first discovery that a known network of neurons functions as a logic 18 

circuit.  The lamprey's oscillator can be implemented with electronic hardware, and the 19 

design is apparently unknown in engineering. 20 

A simulation based on simple neuron responses to excitation and inhibition 21 

illustrates the common period, phase relationships, and burst durations of the segmental 22 

cells' oscillations.  Simulation software for electronic logic circuits verifies the 23 

simulated neuron responses, on vastly different time scales.  The simulation methods 24 

presented here may aid in further study of CPG neurophysiology.  The architecture of 25 

the oscillating JK flip-flop may aid in the development of artificial neural network 26 

applications such as robotics. 27 

Key words: lamprey, locomotion, central pattern generator, CPG, flip-flop, JK flip-28 

flop, oscillator, bursting neuron, explicit neural model, neural network, neuronal 29 

network, robotics.  30 
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1.  Introduction 31 

Flip-flops are the basic building blocks of sequential logic systems, whose logic 32 

gate outputs are functions of both the current inputs and the past sequence of inputs.  33 

This article is the fourth in a series of articles that show how neurons are likely to be 34 

connected to perform certain Boolean logic functions with networks composed of 35 

neural flip-flops (NFFs).  The first three articles [1-3] showed that NFFs and NFFs 36 

configured as central pattern generators (CPGs) can produce the major phenomena of 37 

short-term memory, electroencephalography, and the lobster's stomatogastric ganglion.  38 

Three previous articles [4-6] explored the analog properties of neuron signals in 39 

combinational logic operations, whose outputs depend only on the current state of the 40 

inputs.  A family of fuzzy logic decoders was shown to generate the phenomena central 41 

to color vision and olfaction.  All of these network designs show all of the neurons and 42 

their connections explicitly, and their operation depends only on dynamic neuron 43 

properties of excitation and inhibition.  The networks are logic circuits that can be 44 

composed of electronic hardware as well as neurons.   45 

The six previous articles proposed novel networks of neurons that produce 46 

known nervous system phenomena.  The present article shows that a known network of 47 

neurons functions as a logic circuit, and that this logic circuit's design is essentially the 48 

same as a standard electronic logic circuit design.  Each segmental component of the 49 

central pattern generator (CPG) that controls the lamprey's swimming motion is a JK 50 

flip-flop with set and reset inputs provided by excitatory neurons, each of which has 51 

inhibitory feedback from the flip-flop's opposite memory bit output.  This arrangement 52 

is unstable, causing all of the cells' states to oscillate with a common period and various 53 

phases and burst durations.   54 
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Besides the addition of set and reset cells that generate oscillations, the only real 55 

difference between the lamprey's segmental component and a standard JK flip-flop is 56 

an enabling signal from each input cell to the corresponding output cell.  The selective 57 

pressure that led to the lamprey's deviation from the modern JK flip-flop design is not 58 

clear, but there are at least two possibilities.  With excitatory input, the output cells do 59 

not need to be spontaneously active.  Spontaneously active cells may have been 60 

unavailable or uncommon in the early evolution of vertebrate CPGs.  Second, 61 

electronic JK flip-flops are virtually always enabled by input from a clock.  The 62 

lamprey's enabling signals from the input cells may substitute for this timing function. 63 

The lamprey's CPG has been studied extensively.  Its basic organization of 64 

synaptic connections is well known [7-12], although details are uncertain [13, 14].  One 65 

of these details is that a group of neurons is commonly represented by a single neuron 66 

symbol in simplified CPG figures.  A group's size and organization of synaptic 67 

connections may affect the periods, phases, and burst durations of the neurons' 68 

oscillations.  The lamprey's CPG has been simulated mathematically [9, 15], and the 69 

CPG has been used as a model for artificial controllers that can produce swimming 70 

movements [16]. 71 

2.  Methods 72 

The lamprey's CPG was simulated in MS Excel and CircuitLab.  For the 73 

implementation with neurons, the number ti represents the time after i neuron delay 74 

times.  All neuron delay times are assumed to be equal, but minor differences would 75 

not have a significant effect on the simulations.  A JK flip-flop's outputs must be 76 

opposite, so at time t0 = 0, the neuron response of one of the outputs was initialized at 1 77 

and the rest were initialized at 0.  (If all responses are initialized at 0, the simulated 78 

responses oscillate erratically.)  For i > 0, the output of each neuron at time ti was 79 
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computed as a function of the inputs at time ti-1 according to the neuron responses 80 

derived below and indicated in the first figure.  After a few neuron delay times, the 81 

responses fall into periodic patterns.  To verify the simulated neural implementation, an 82 

electronic implementation was simulated in CircuitLab.  The simulation software 83 

initializes the states.   84 

3.  Neural Boolean logic 85 

All Boolean logic results for the networks presented here follow from the 86 

neuron responses to binary (high and low) input signals and the algebra of Boolean 87 

logic applied to the networks' connections.  Analog signals (intermediate strengths 88 

between high and low) were considered in [1, 2] only to show how NFFs can generate 89 

robust binary signals in the presence of moderate levels of additive noise in binary 90 

inputs.  That discussion will not be repeated here. 91 

3.1.  Binary neuron signals 92 

Neuron signal strength, or intensity, is normalized here by dividing it by the 93 

maximum possible intensity for the given level of adaptation.  This puts intensities in 94 

the interval from 0 to 1, with 0 meaning no signal and 1 meaning the maximum 95 

intensity.  The normalized number is called the response intensity or simply the 96 

response of the neuron.  Normalization is only for convenience.  Non-normalized 97 

signal strengths, with the highest and lowest values labeled Max & Min rather than 1 98 

and 0, would do as well. 99 

The responses 1 and 0 are called binary signals collectively and high and low 100 

signals separately.  If 1 and 0 stand for the Boolean truth values TRUE and FALSE, 101 

neurons can process information contained in binary signals by functioning as logic 102 

operators. 103 
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The strength of a signal consisting of action potentials, or spikes, can be 104 

measured by spike frequency.  A high signal consists of a burst of spikes at the 105 

maximum spiking rate.  For a signal that oscillates between high and low, the 106 

frequency of the oscillation is the frequency of bursts, not the frequency of spikes. 107 

For binary signals, the response of a neuron with one excitatory and one 108 

inhibitory input is assumed to be as shown in Table 1.  Of the 16 possible binary 109 

functions of two variables, this table represents the only one that is consistent with the 110 

customary meanings of "excitation" and "inhibition."  Table 1 is also a logic truth table, 111 

with the last column representing the truth values of the statement X AND NOT Y.  In 112 

simplest terms, the neuron performs this logic function because it is active when it has 113 

excitatory input and does not have inhibitory input. 114 

 115 

Excitatory X Inhibitory Y Response 

0 0 0 

0 1 0 

1 0 1 

1 1 0 

Table 1.  Neuron response to two binary inputs, one excitatory and one inhibitory.  116 

The response is the logical truth value of X AND NOT Y. 117 

The AND-NOT gate is virtually never used as a building block in logic circuit 118 

design.  Its significance for the networks presented here is that it can be implemented 119 

with a single neuron.  It was shown in [5] that the AND-NOT gate, with access to high 120 

input, is functionally complete, meaning any logic function can be performed by a 121 

network of such components. 122 

Some neurons are active spontaneously and continuously without excitatory 123 

input [17, 18].  In the figures, neurons with no excitatory input are spontaneously 124 
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active.  The behavior of a spontaneously active neuron is assumed to be the same as a 125 

neuron with a high excitatory input. 126 

3.2.  Single neuron logic primitives 127 

Fig 1 shows symbols for a few logic primitives.  For several reasons that were 128 

detailed in [1], networks are illustrated with standard (ANSI/IEEE) logic symbols 129 

rather than symbols commonly used in neuroscience schematic diagrams.  One of the 130 

reasons is that the symbols can be interpreted in two ways.  As a logic symbol, the 131 

rectangle with one rounded side in Fig 1A represents the AND logic function, and the 132 

circle represents negation.  The input variables X and Y represent truth values TRUE or 133 

FALSE, and the output represents the truth value X AND NOT Y.  Second, Fig 1A can 134 

also represent a single neuron, with a circle representing inhibitory input and no circle 135 

representing excitatory input.  If X and Y are binary inputs, the output is X AND NOT 136 

Y by Table 1.  For the rest of the symbols in Fig 1 and the networks in subsequent 137 

figures, the outputs follow from straightforward Boolean logic.  138 

 139 

 140 

Fig 1.  Logic primitives: AND-NOT, NOT, NOR,  NAND.  Each white symbol can be 141 

implemented with a single neuron or with electronic hardware.  The gray symbol is 142 
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commonly used in electronic logic circuit design.  A. A logic symbol for an AND-NOT 143 

gate, or a neuron with one excitatory input and one inhibitory input.  B. An AND-NOT 144 

gate configured as an inverter, i.e., a NOT gate.  C. A three-input AND-NOT gate, or a 145 

neuron with one excitatory input and two inhibitory inputs.  D. A three-input AND-146 

NOT gate configured as a NOR gate (NOT OR).  E. The NOR function implemented 147 

with an AND gate, or with a spontaneously active neuron and two inhibitory inputs.  148 

F. The most common symbol for a NAND gate (NOT AND). 149 

If the first input to an AND-NOT gate is continuously TRUE, as shown in Fig 150 

1B, the output value is NOT X, i.e., the opposite of the input X.  Figs 1C and 1D are 151 

extensions of Figs 1A and 1B, respectively.  The neuron logic for Fig 1C follows from 152 

Table 1: if one inhibitory input can suppress one excitatory input, then either one of 153 

two inhibitory inputs can suppress the excitatory input.  The output for Fig 1D follows 154 

from Fig 1C.  The neuron output for Fig 1E follows from Fig 1D and the properties that 155 

a figure that shows only inhibitory input is assumed to be spontaneously active, and the 156 

behavior of a spontaneously active neuron is the same as a neuron with high excitatory 157 

input. 158 

The logic primitive NOT(X OR Y) is called the NOR operator (for "NOT OR").  159 

By De Morgan's law, NOT(X OR Y) is logically equivalent to (NOT X) AND (NOT 160 

Y).  The latter is the output of Figs 1D and 1E.  In simplest terms, these neurons are 161 

NOR gates because each neuron is active when it has inhibitory input from neither X 162 

nor Y.   163 

The logic primitive NOT(X AND Y) is called the NAND operator (for "NOT 164 

AND").  Fig 1F is the most commonly used symbol for a NAND gate.  Like the AND-165 

NOT operator with access to high input, the NOR and NAND operators are 166 
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functionally complete.  They are also two of the most commonly used building blocks 167 

in electronic computational systems.   168 

3.3.  JK flip-flops 169 

A flip-flop is a memory mechanism that stores one bit of information in an 170 

output that is either 0 or 1.  This output is the flip-flop state or memory bit.  A change 171 

in the state inverts the state.  The information is stored by means of a brief input signal 172 

that determines the output.  A distinction is sometimes made between a "flip-flop" and 173 

a "latch," with the latter term reserved for asynchronous memory mechanisms that are 174 

not controlled by a clock.  The more familiar "flip-flop" is used here. 175 

The JK flip-flop is the most widely used flip-flop design in electronic 176 

computational systems because of its advantageous features.  It is called a universal 177 

flip-flop because it can be configured to function as an SR (set reset) flip-flop, a D flip-178 

flop, or a T (toggle) flip-flop.  It is faster than some other flip-flop designs and does not 179 

have propagation delay problems.  If the inputs are both high simultaneously, rather 180 

than causing an error as in a simpler SR flip-flop, the flip-flop state is inverted because 181 

one of the inputs is suppressed by one of the outputs.   182 

Fig 2 shows two implementations of the JK flip-flop, which were also given in 183 

[3].  The flip-flop's memory bit is labeled M in the diagrams.  The inputs S and R are 184 

normally low.  A brief high input S sets the state to M = 1, and a brief high input R 185 

resets it to M = 0.  Feedback to the output gates maintains a stable state after the input 186 

returns to low.   187 

 188 
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 189 

Fig 2.  JK flip-flops.  A. A JK flip-flop composed of logic gates from Fig 1 that can be 190 

implemented with neurons or with electronic components.  B. One of the standard 191 

designs for an electronic JK flip-flop.  Each design can be derived from the other by 192 

moving each negation circle from one end of a connection to the other.  If a circle is 193 

moved past a branch point to an output, the output is inverted.  Moving the negation 194 

circles does not change the logic of the network, but each logic gate in Fig 2A can be 195 

implemented with a single neuron from Fig 1. 196 

4.  Lamprey central pattern generator 197 

Fig 3A shows a schematic of the CPG that controls the undulatory swimming 198 

motion of the lamprey.  Fig 3B illustrates the segmental component in standard 199 

engineering form with symbols from Fig 1, which can be implemented by neurons or 200 

electronic hardware.  This figure is a modification of the JK flip-flop in Fig 2A.   201 

 202 
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 203 

Fig 3.  Lamprey CPG that coordinates locomotion.  A. The brainstem, 204 

sensory, and segmental components that generate bursts (adapted from [11]).  A single 205 

segmental component is shown in the left and right squares.  Each neuron symbol 206 

represents a group of neurons.  Synapses that terminate at a square affect all neurons in 207 

the square.  The excitatory neuron (E) in each square excites all of the other neurons in 208 

that square.  The motor neuron (M) controls the muscles on one side of the segment.  209 

The commissural inhibitory neuron (I) inhibits all of the neurons in the contralateral 210 

square.  The lateral neuron (L) inhibits the ipsilateral commissural neuron.  The 211 

reticulospinal brainstem neurons are phasic (Rph) and tonic (Rt).  The sensory neurons 212 

include stretch-receptor neurons that are excitatory (SRE) and inhibitory (SRI).  B. The 213 

segmental component in the squares in Fig 3A illustrated in standard engineering form 214 

with symbols from Fig 1.  Subscripts indicate the left and right sides. 215 

This study assumes a somewhat simplified segmental component.  As stated 216 

above in Fig 3A, single neurons represent groups of neurons.  The groups' sizes and 217 

organizations of synaptic connections may affect the periods, phases, and burst 218 

durations of the neurons.  These are some of the details that are uncertain [13, 14].   219 
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It is also assumed here that only the segmental excitatory neurons (E) receive 220 

input from tonic reticulospinal brainstem neurons (Rt), as shown in Fig 3B.  Other input 221 

to segmental neurons from the brainstem and sensory neurons affect the neurons' 222 

oscillation frequency [11], which is proportional to the speed of the lamprey's 223 

undulatory wave [11], but it will be shown in the simulations that such external input to 224 

the segmental neurons is not necessary for the neurons' states to oscillate.   225 

The network composed of four lateral (L) and inhibitory (I) cells in Fig 3 is a 226 

modified JK flip-flop.  The only difference between this network and the JK flip-flop 227 

of Fig 2A is that the inhibitory cells (I) are AND-NOT cells from Fig 1C rather than the 228 

NOR cells of Fig 1E that are shown in Fig 2A.  When the excitatory input to Fig 1C is 229 

high, as shown in Fig 1D, the cell is enabled to function the same as Fig 1E.  Possible 230 

reasons for this deviation from the JK flip-flop design in Fig 2A were discussed in the 231 

introduction.   232 

This difference from the standard JK flip-flop design makes the burst durations 233 

of the I cells one neuron delay time shorter due to the wait for them to be activated by 234 

the E cells, and the burst durations of all the other cells one delay time longer due to the 235 

wait for the I cells to inhibit them.  The modification does not affect the common 236 

period of six delay times shown in the next section. 237 

5.  Simulations of the lamprey CPG segmental component 238 

Two simulations of the CPG segmental component in Fig 3B were carried out 239 

as described in the Methods section.   240 

5.1.  Implementation with neurons   241 

Fig 4 shows an Excel simulation of the CPG segmental component 242 

implemented with neurons.   243 
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 244 

 245 

Fig 4.  Simulation of the lamprey segmental network in Fig 3B implemented with 246 

neurons. 247 

The graphs in Fig 4 show that the common period of the neurons' simulated 248 

oscillations is six neuron delay times.  The two sets of neuron responses in the left and 249 

right sides of the segment have the same oscillations, 180 degrees out of phase.  The 250 

motor (M) and lateral (L) neurons on each side have identical graphs because they have 251 

the same inputs, as shown in Fig 3.  The graphs show the state changes after each delay 252 

time (as numbered at the top of Fig 4):  253 

0. Uninhibited by IR, EL becomes active.  IR remains inhibited by LR until LR 254 

becomes inhibited and ER becomes active. 255 

1. EL excites the other three left cells, which are all unhibited. 256 

2. IL inhibits the right cells, and LL inhibits IL. IL remains inhibited by LL until LL 257 

becomes inhibited and EL becomes active. 258 
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3. Uninhibited by IL, ER becomes active. 259 

4. ER excites the other three right cells, which are all unhibited. 260 

5. IR inhibits the left cells, and LR inhibits IR. 261 

6. Uninhibited by IR, EL becomes active. 262 

5.2.  Implementation with electronic components 263 

To verify the simulated neural implementation in Fig 4, a CircuitLab simulation 264 

of an electronic implementation of Fig 3B is shown in Fig 5.  Because the AND-NOT 265 

gate (Fig 1A) is virtually never used as a building block in logic circuit design, it is 266 

normally not provided in simulation software.  The AND-NOT gate can be 267 

implemented with an AND gate and a NOT gate, as shown in Fig 5A.  The simulation 268 

software assumes a 10 nanosecond delay for each gate, so buffer gates were added 269 

wherever Fig 3B indicates excitatory inputs to make a consistent 20 ns delay time for 270 

each simulated neuron.  The simulated oscillation period of six neuron delay times is 271 

therefore 120 ns, which is shown on the Time axis. 272 
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 273 

Fig 5.  Simulation of the lamprey segmental network in Fig 3B implemented with 274 

electronic hardware.  A. The segmental network in Fig 3B implemented with 275 

electronic hardware.  B. A CircuitLab simulation of the electronic implementation.  276 

Logic truth values 0 and 1 are customarily represented by 0V and 5V, respectively.  277 

The results are identical to the simulated neural implementation shown in Fig. 4. 278 

  279 
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